BackdoorCTF 2023 — mini_RSA Challenge Writeup
reetings, fellow cybersecurity enthusiasts and CTF players! In this writeup, we will dive into the solution of the “mini_RSA” challenge from the BackdoorCTF 2023.
Challenge Overview
Groot has encrypted a message using RSA with a key size of 512 bits and a public exponent (RSA_E) of 3. The challenge provides two files: script.py
and output.txt
. The former contains the RSA encryption script used by Groot, while the latter presents the output ciphertext (c) and the modulus (n).
Let’s explore the provided files and understand the challenge before revealing the solution.
The Encryption Script: script.py
# Import necessary modules
from Crypto.Util.number import getPrime, bytes_to_long, GCD
import random
import time
# Set the seed for randomness
random.seed(time.time())
# Define the flag to be encrypted (flag{REDACTED})
flag = b"flag{REDACTED}"
# Define RSA parameters
KEY_SIZE = 512
RSA_E = 3
# Function for fast modular exponentiation
def fast_exp(a, b, n):
output = 1
while b > 0:
if b & 1:
output = output * a % n
a = a * a % n
b >>= 1
return output
# Function to check RSA parameters
def check(p, q, n):
a_ = random.randint(1, 100)
b_ = random.randint(1, 100)
s = fast_exp(p, fast_exp(q, a_, (p - 1) * (q - 1)), n)
t = fast_exp(q, fast_exp(p, b_, (p - 1) * (q - 1)), n)
result = s + t
print(result)
# Function to generate RSA parameters
def gen_RSA_params(N, e):
p = getPrime(N)
q = getPrime(N)
while GCD(e, (p - 1) * (q - 1)) > 1:
p = getPrime(N)
q = getPrime(N)
n = p * q
check(p, q, n)
return (p, q, n)
# Generate RSA parameters and encrypt the flag
p, q, n = gen_RSA_params(KEY_SIZE, RSA_E)
m = bytes_to_long(flag)
c = pow(m, RSA_E, n)
# Print the ciphertext and modulus
print(c)
print(n)
This script generates random prime numbers p
and q
, checks some conditions, and then encrypts the flag using RSA. The check
function is there to create a side channel but is not relevant to our solution.
The Output File: output.txt
s+t=24986288511406610689718446624210347240800254679541887917496550238025724025245366296475758347972917098615315083893786596239213463034880126152583583770452304
c=5926440800047066468184992240057621921188346083131741617482777221394411358243130401052973132050605103035491365016082149869814064434831123043357292949645845605278066636109516907741970960547141266810284132826982396956610111589
n=155735289132981544011017189391760271645447983310532929187034314934077442930131653227631280820261488048477635481834924391697025189196282777696908403230429985112108890167443195955327245288626689006734302524489187183667470192109923398146045404320502820234742450852031718895027266342435688387321102862096023537079
The output file provides the sum of two exponentiations s+t
, the ciphertext c
, and the modulus n
.
My Solution Script: solve.py
# Import necessary modules
from Crypto.Util.number import bytes_to_long, long_to_bytes, getPrime, GCD
import random
import time
# Function for fast modular exponentiation
def fast_exp(a, b, n):
output = 1
while b > 0:
if b & 1:
output = output * a % n
a = a * a % n
b >>= 1
return output
# Function to check RSA parameters (not used in the solution)
def check(p, q, n):
a_ = random.randint(1, 100)
b_ = random.randint(1, 100)
s = fast_exp(p, fast_exp(q, a_, (p - 1) * (q - 1)), n)
t = fast_exp(q, fast_exp(p, b_, (p - 1) * (q - 1)), n)
result = s + t
print(result)
# Function to generate RSA parameters
def gen_RSA_params(N, e):
p = getPrime(N)
q = getPrime(N)
while GCD(e, (p - 1) * (q - 1)) > 1:
p = getPrime(N)
q = getPrime(N)
n = p * q
check(p, q, n)
return (p, q, n)
# Values from the output.txt
s_plus_t = 24986288511406610689718446624210347240800254679541887917496550238025724025245366296475758347972917098615315083893786596239213463034880126152583583770452304
c = 5926440800047066468184992240057621921188346083131741617482777221394411358243130401052973132050605103035491365016082149869814064434831123043357292949645845605278066636109516907741970960547141266810284132826982396956610111589
n = 155735289132981544011017189391760271645447983310532929187034314934077442930131653227631280820261488048477635481834924391697025189196282777696908403230429985112108890167443195955327245288626689006734302524489187183667470192109923398146045404320502820234742450852031718895027266342435688387321102862096023537079
# Generate RSA parameters
p, q, n = gen_RSA_params(512, 3)
# Calculate phi(n)
phi_n = (p - 1) * (q - 1)
# Calculate the modular inverse of e (RSA_E) modulo phi_n
d = pow(3, -1, phi
_n)
# Decrypt the ciphertext
m_decrypted = pow(c, d, n)
# Convert the decrypted message from long to bytes
flag_decrypted = long_to_bytes(m_decrypted)
# Print the decrypted flag
print(flag_decrypted.decode('utf-8'))
Explanation and Solution
The provided script uses RSA encryption with a small public exponent (e = 3
). To solve this challenge, we can use the provided ciphertext (c
), modulus (n
), and the knowledge that e = 3
to decrypt the message.
The solve.py
script first generates new RSA parameters (p
, q
, n
) using the gen_RSA_params
function. However, the generated values are not used since we already have the correct values from output.txt
.
The script then calculates phi(n)
, the modular inverse of e
(RSA_E) modulo phi(n)
, and finally decrypts the ciphertext using modular exponentiation. The decrypted flag is then printed.
Conclusion
And there you have it! We successfully decrypted Groot’s message and unveiled the hidden flag. The mini_RSA challenge provided a beginner-friendly introduction to RSA encryption and the importance of securely generating key pairs.
Feel free to explore the provided scripts and experiment with different RSA concepts to deepen your understanding of cryptography. Happy hacking, and may the challenges keep coming!
Written by sakibulalikhan of HiddenInvestigations for BackdoorCTF 2023.
Comments